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Abstract. A simple hybrid of real space renormalisation group theory and finite-lattice 
calculations is described. The method is based on a lattice-restructuring transformation, 
with the criterion that the free energies of the original and restructured lattices be equal. 
We approximate the free energy per spin of the infinite lattice by an exact evaluation of 
the partition function for a small cluster. As a result of this transformation, the coupling 
constant of the restructured lattice is found to be temperature dependent. Our method is 
illustrated by studying the Ising model in two and three dimensions, and two-dimensional 
Potts models. The calculations involve little more than is required for a Migdal-Kadanoff 
transformation, yet the critical properties are found to be significantly improved in com- 
parison. Detailed comparisons are also made with the global thermodynamic properties 
calculated within this approximation (free energy, intemal energy, specific heat, spon- 
taneous magnetisation) and exact or best known results for the models. The simplicity of 
the method allows for the study of more complex lattice models, and several possible 
applications are discussed. 

1. Introduction 

The determination of global and critical-point properties of lattice models in statistical 
mechanics is a central problem. In the absence of exact solutions or mappings, any 
of a number of approximation methods may be useful ; mean-field theory (Domb 1960), 
series expansions (Stanley 1971), and the now widely used real space renormalisation 
group (RG) techniques (Burkhardt and van Leeuwen 1982). Of the real space methods, 
the Migdal-Kadanoff (MK) approximation (Migdal 1975, Kadanoff 1976) is among 
the most widely used, and has been applied to a variety of problems, including random 
systems (Kirkpatrick 1977, Jayaprakash et a1 1978, Kinzel and Domany 1981), surface 
effects (Lipowsky and Wagner 198 l ) ,  order-disorder transitions (Berker et a1 1978) 
and many others. The great virtue of this method is its simplicity, but its numerical 
accuracy, in terms of critical temperatures and exponents, and thermodynamic func- 
tions, is generally poor, especially in higher dimensions. Of course, under certain 
implementations, such as the limit of infinitesimal rescaling (Kadanoff 1975), the results 
improve somewhat. Recently, it has been shown (Walker 1982) that a lattice-restruc- 
turing transformation, in which one attempts to preserve the free energy of the system, 
rather than simply preserving the energy (i.e. the number of bonds) as in MKRG, can 
lead to significantly more accurate critical parameters, while at the same time introduc- 
ing control into what is otherwise an uncontrolled approximation at finite temperatures. 
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1276 R E Goldstein and J S Walker 

In this paper, we introduce a hybrid transformation, combining both real space RG 

techniques (decimation) and finite-lattice (cluster) calculations, which we term a 
cluster-decimation approximation (CDA).  Whereas previous work (Walker 1982, Andel- 
man and Walker 1983) involved expressing the free energies of the original and 
restructured lattices as power series expansions in the coupling constant, the present 
method approximates the free energy per spin of the infinite lattice by that of a finite 
cluster, for which the partition function is exactly soluble. Since the free energy, and 
indeed the internal energy, of the infinite systems have only weak non-analyticities, 
we may expect the finite-lattice results to be quite representative of the infinite system. 
We emphasise that the singularities in the calculation come from the renormalisation 
group transformation, and the thrust of our approach is to ‘calibrate’ the lattice 
restructuring. This approach leads to the same asymptotic relations between restruc- 
tured and original couplings as in the earlier works, and in addition provides an 
accurate interpolating function for intermediate temperatures. Furthermore, since the 
series expansions for complicated, multiple-parameter Hamiltonians are difficult to 
construct, the present approach should be easier to implement for such models. 

In 0 2 we review briefly the Migdal-Kananoff approximation, and motivate the 
transformation to be studied in § 3, where we present the calculations and results for 
critical and thermodynamic properties of king and Potts models. We conclude in § 4 
with a brief recapitulation of the approximation, and examples of other problems for 
which the method may prove useful. 

2. Background 

The difficulty in determining thermodynamic properties of lattice models is the topology 
of site-site interactions, that is, the intricate connectivity of the lattice. The Migdal- 
Kadanoff approximation consists of reducing the connectivity of a lattice so that a 
fraction of the sites is coupled one-dimensionally to nearest neighbours. With this 
new, restructured lattice an exact decimation can be performed on these sites, generating 
renormalised couplings between the remaining sites, and thereby iterating a map in a 
finite-dimensional Hamiltonian parameter space. While the advantages of remaining 
within such a finite space are great, the error introduced in the bond-moving step is 
substantial and uncontrolled at finite temperature. 

Figure 1 illustrates the MK approximation as applied to the square lattice ( d  = 2). 
First, the lattice is divided into b x b supersquares ( b  is the length rescaling factor in 

( U )  ( b )  (C) 

Figure 1. Standard Migdal-Kadanoff transformation iilustrated for the two-dimensional 
square lattice, and rescaling factor b = 2. The bond-moving transformation maps the 
original lattice ( a ) ,  with coupling constant K, to the restructured lattice ( b ) ,  with couplings 
K and disconnected spins indicated by X’S. An exact decimation then maps the system 
to the lattice shown in ( c ) ,  with renormalised couplings K‘. 
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units of the lattice constant; b = 2  in the figure) and all interior bonds are moved to 
the supersquare edges. (Note that we consider the symmetric version of bond moving.) 
The initial coupling is denoted by K (e.g. an  Ising model interactioc Ks,s,; s, = * l )  
and the strengthened remaining couplings by 2. MKRG determines K in terms of K 
by requiring that the total number of bonds is preserved in the bond-moving step. For 
a d-dimensional lattice the relationship is (Kadanoff 1976) 

k /  K = b d - ' .  (1) 

Note that the ratio is temperature independent. Kadanoff has shown that this prescrip- 
tion will generate a free energy which is a lower bound to the true free energy. For 
most statistical models, it will be exact at zero temperature, since the free energy is 
entirely energetic in that limit, and preserving the number of bonds guarantees matching 
the free energy. Exceptions to this occur in systems with finite ground state entropy 
per spin, such as antiferromagnetic q-state Potts (Potts 1952) models with q > 2 (Wu 
19821, and  other frustrated systems. Following the approximate bond-moving step, 
an  exact one-dimensional decimation is performed on the supersquare edge sites, 
generating a renormalised coupling, K ' ,  where. for an  Ising model with b = 2, 

K ' = In[cosh( 2 k )]. (2) 

When applying M K  to multiple-parameter Hamiltonians, the usual approximation is 
to choose the ratio of bond-moved to original couplings to be bd- '  for all interaction 
terms. Attempts have been made to improve on standard M K  by altering the bond- 
moving pattern (Swendsen and Zia 1979), for example, or by introducing variational 
parameters into the transformation (Caracciolo 1981, Lipowsky 1982). 

In this work, we construct a more general restructuring transformation, one that 
does not involve bond moving at all, but rather is based on preserving the free energy. 
In  so doing, we find that the ratio of couplings, k/K,  takes on a temperature 
dependence, and that the ratios for different interaction terms assume different func- 
tional forms. Though not often thought of in these terms, it is worth noting that other 
theoretical techniques also rely on preserving the free energy. Examples include the 
Niemeijer-van Leeuwen cluster approximation (Niemeijer and van Leeuwen 1973, 
1974), dedecoration transformations (Fisher 1959, Sjiozi 1972, Wheeler 1977), and  
methods for tracing out non-ordering degrees of freedom (Vause and Walker 1982, 
Goldstein and Walker 1983). These latter methods generally involve taking only a 
single bond as the finite cluster on which to evaluate the approximate free energy, yet, 
in spite of the calculational simplicity, the results are found to be quite accurate. 

Another approach based on studying finite systems is the phenomenological renor- 
malisation group (Nightingale 1982, and references therein), in which renormalised 
couplings are computed by matching correlation lengths or other diverging quantities 
for systems of varying sizes. These methods, coupled with a scaling ansatz, lead to 
extremely precise critical properties, although the numerical imnlementation can be 
quite demanding. Finally, recent work (Kaufman and Mon 1984) has applied the idea 
of finite-size scaling to models defined on hierarchical lattices. 

3. Calculations 

In this section we describe the general procedures involved in the cluster-decimation 
approximations. For the various properties of interest we illustrate the method in some 
detail for a particular system, and simply present the results for others. 
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3.1. Critical properties 

3.1.1. Zsing model. We consider first the smallest non-trivial cluster for the CDA; the 
2 x 2 cluster with periodic boundary conditions shown in figure 2( a ) .  These boundary 
conditions ensure proper bond counting, which is especially important in the strong- 
coupling limit. The reduced Hamiltonian for this system is (@ = l / k g T )  

-@X2 x2( K ) = 2K ( s + ~ 2 ~ 3  + ~ 3 ~ 4  + s ~ s I ) ,  (3) 

where si = * 1, and the factor of 2 comes from the periodic boundary conditions. The 
reduced free energy per site, is 

?bJ*, L,L. 
I '  

1 9  
X 

(bl  

Figure 2. Cluster-decimation approximation (CDA)  illustrated for the 2 x 2  cluster (a ) ,  and 
for the 2 x 2 x2 cluster ( b )  The coupling constants have the same role in the transformation 
as those in figure 1 Site numbering in ( a )  indicates the periodic boundary conditions 

In anticipation of a decimation transformation, we choose the restructured lattice 
shown in the centre of figure 2(a) .  Note that there is one decoupled site, and that the 
remaining lattice, if repeated via the periodic boundary conditions, generates the 
MK-restructured lattice of figure l (b) .  The free energy per site of this cluster, denoted 
by f ( k ) ,  is determined from the modified Hamiltonian 

- p 2 2 x 2 ( I z )  =2k(s , sa+s3s4) .  (5) 

f2x2 (k )  =f ln [4exp(4 i )+8+4exp( -4I? ) ] .  (6) 

I? ( K )  = $1n[y + ( y 2  - I )"~] ,  

The statistical summation gives 

Preserving the free energy means choosing k ( K )  so that 72x2(k) =f,, ,(K).  We find 
that 

(7) 
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where 

y=$ l+cosh(8K) ] .  (8) 

lim k /  K = 2 = b d - ' ,  (9) 

In the strong-coupling limit, T + 0 ( K  + +CO), the strengthening factor becomes 

( b  = d = 2) 

which is just the M K  prescription. 
However, as T + CO ( K  + 0), we find 

the square root of the M K  rule. These results are in agreement with those from series 
expansion results for infinite systems (Walker 1982, Andelman and Walker 1983). The 
full function k/K against K is shown in figure 3, from which it is clear that the M K  

factor always overstrengthens the bonds, therefore overestimating the transition tem- 
perature. 

4-8  

0 
8 

m 

d 

3- 

7 0 9 0  

1088 

I 
>086 

0 -084 
~ -d 

C l  3 5  1 0  0 1/16 1/12 118 114 L---- ____ ~- L--p-L 

K 1 

Figure 3. Bond-strengthening factor, k/K, for the Figure 4. Critical coupling, K * ,  and thermal 
two-dimensional k ing  model using the 2 x 2 and 4 x 4  exponent, y,, for the two-dimensional Ising model 
CDAS. Arrows indicate the critical couplings for the using cluster-decimation approximations of various 
two cases. Notice that the M K  result ( b d - '  = 2) sizes ( N  = number of sites in the CDA). 
always overstrengthens the bonds. 

Once the function k (  K )  is known, the exact decimation step of the RG transforma- 
tion proceeds as usual, with the result given by 

K '  = f ln[cosh{2k ( K  )}I. (11) 
The non-trivial fixed point occursjor K *  = 0.492. . . , to be compared with the exact 
result (Onsager 1944) of f l n ( l + 4 2 )  = 0.440 68 . . . and the M K  result of 0.305. 

The thermal exponent y, = 1 /  v is defined through the relation 

aK ' /aKIK*  = b Y T ,  (12) 

a K ' / a  K = tanh(2k ( K  )}(ak/a K ). (13) 
The quantity a k / a K  is obtained from implicit differentiation of the relation defining 
k(K) ,  that = f 2 x 2 ( K ) .  We find yT=0.839. .  . , an improvement over the M K  
approximation, which gives yT = 0.747. The exact result is unity. 

where b = 2 in this calculation. From equation ( 1  1 )  
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Of course, it is of interest to study how the size of the cluster used in the calculation 
affects the estimates of the critical properties. To illustrate this, we have, by straightfor- 
ward enumeration, generated the partition functions for the 2 x 4,2  x 6 and 4 x 4 clusters, 
again using periodic boundary conditions. Although an analytic solution of the form 
k ( K )  is not generally possible, it is straightforward to solve numerically for the 
relation. As with the 2 x 2 calculation described above, the high- and low-temperature 
limits of k/K are b(d-’)’2 and b d - ’ ,  respectively. The results for K *  and yT are 
collected in table 1 and plotted in figure 4 as a function of 1/ N, where N is the number 
of sites in the cluster. The apparently non-monotonic convergence of the results is a 
consequence of the fact that clusters of different shapes have different free energies, 
even when they have the same number of sites. While the results tend toward well 
defined and fairly accurate limits, these values differ from the exact results. We can 
trace this to the one-dimensional nature of our Hamiltonian parameter space (Walker 
1982). 

Table 1. Critical properties of the two-dimensional Ising model, as calculated with several 
cluster-decimation approximations (CDA), compared with those obtained from the Migdal- 
Kadanoff ( M K )  transformation, and the exact results (Onsager 1944, Yang 1952). 

C D A ( 2 X 2  2 x 4  2 x 6  4 x 4 )  M K ( b = 2 )  Exact 

K *  0.492 0.500 0.503 0.501 0.305 0.441 

Y H  1.909 1.940 1.967 1.953 1.879 1.875 
Y l  0.839 0.865 0.870 0.887 0.747 1 

The three-dimensional Ising model can be studied similarly (see figure 2 ( b )  for the 
restructured cluster) with the results collected in table 2. The critical coupling is within 
4% of the accepted value, whereas the MK value is more than a factor of 3 too small. 

In all the above examples we have determined the relation between the restructured 
coupling, k, and the original coupling, I<, by matching cluster free energies. We have 
explored matching other thermodynamic functions in the same way, such as the reduced 
internal energy per site e = Kaf/aK. The thermal exponent in this case is found to be 
within 5% of the exact result. A possible explanation for the improvement obtained 
by matching the internal energy is seen if one considers graphical expansions of the 
free energy and internal energy: whereas only closed graphs contribute to the partition 
function series, both closed and open graphs contribute to the energy series (Stanley 
1971). As a result, the finite clusters may be more representative of the infinite system 
in terms of calculating the internal energy. 

Table 2. As in table 1, but for the three-dimensional Ising model. The column labelled 
‘estimates’ collects results from Blote and Swendsen (1979). 

C D A ( 2  X 2 X 2 )  M K  ( b  = 2) Estimates 

K *  0.215 0.065 0.222 
YT 1.16 0.94 1.6 
YH 2.49 2.56 2.5 
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An example of an enlarged parameter space is that involving both the bilinear 
exchange term K and a magnetic field H. Thus, we add to the Hamiltonian the term 

Here we have chosen to associate the magnetic field with bonds, hence the factor of 
1/2d. For the restructured cluster we include the term 

fi c si, 
where the summation is over all ‘connected’ sites of the lattice. Straightforward 
enumeration of the configurations gives 

z 2 x 2 = x ~ ( w 4 + w - 4 ) + 4 ( w 2 +  1 + w-2)+2x-*, 

i 2 x 2 = 2 [ ) ; 1 4 ( ~ 3 +  G - ~ ) + ( ) ; ~ - ~ + ~ ) ( G + G - ~ ) ] ,  
and 

where 

x = exp( K ) ,  

w = exp( H ) ,  

2 = e x p ( k )  

G = exp( l j )  

In the presence of a magnetic field, the recursion relations for the b = 2 decimation 
transformation are 

K ’ = a l n { R ( + + ) R ( -  -)/I?(+ -)2} (20) 

H ’ = $ d  l n { R ( + + ) / R ( - - ) } + f i  (21) 

R(  + +)  = );12G+);1-2G-i, 

R( + - )  = $+ ;-I .  

where 

R( - - )  = );12+-1+);1-2; 

(22) 
The spontaneous magnetisation, M, is calculated recursively from the relation, 

M ( K ) = b - d E l  aH H = O  M ( K ’ ) ,  

which becomes 

Migdal-Kadanoff RG sets a f i / a H  = b d - ’ .  We choose to determine this by matching 
free energies of the clusters. This can be easily done by expanding the partition 
functions 

(25) 

(26) 

Z 2 x 2 (  K ,  H )  = Z 2 x 2 (  K, H = 0) + 16 H 2 (  x8 + 1 ) + O( H 4 ) ,  

Z2,,(lZ, e )  = Z2,,(E7, f i=O)+2f i2 (924+2+Z-4)+O(f i4 ) .  

TIUS, for H, fi+ o e=( 8(x8+1) 
aH 9Z4+2+2-4 ’ 
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and k ( K )  is determined from the zero-field free energy match. Here is an explicit 
example of different interaction parameters strengthened by different factors, as men- 
tioned in § 2. 

The magnetic exponent, y,, is determined from the relation 

.. . 
K = K *  

Results for the 2~ and 3~ clusters are collected in tables 1 and 2, and compared with 
MKRG, exact results (zD),  and current estimates ( 3 ~ ) .  

3.1.2. Potts models. The extension of the above techniques to Potts models is straightfor- 
ward. As in an earlier work (Andelman and Walker 1983), however, we do choose to 
make a distinction between two versions of the Potts model; the standard version 
(denoted by subscript s), and the traceless version (subscript t).  The significance of 
this distinction is discussed below. The coupling in the model is KS, , , ,  where 
ut = 1,2, . . . , q and S , ,  is the Kronecker delta function. Taking into account periodic 
boundary conditions, the appropriate 2 x 2 Hamiltonians are 

-PXs(K, 9 )  = 2K[Su,u,+ S u p , +  &T3u4+ fju4,0,1,  (29) 

- P ' % ( R  4)  = 2 m j u , , , +  ~,,,,l, (30) 

-PEt(K q ) = - P X s ( K  4) -8Klq ,  (31) 

-p&( 2, q )  = -pgS( 2, q )  - 4 2 / q .  (32) 

The important difference between these two versions of the Potts model is seen by 
expanding the free energies of the 2 x 2  cluster for high temperatures 

f s = l n q + 2 q - ' K + 2 q - ' ( 1 - q - ' ) K 2 +  . . .  (33) 

ys = In q + q-'2 + q- '(1- q-')k2+. . . (34) 

f;= in q + 2 q - ' (  1 - q - ' ) K 2 + ,  . . (35) 

Thus, in this limit, the standard Potts model strengthening factor, obtained by equating 
f, and T,, is k /  K = bd-' = 2 just as in the M K  approximation. Note that this is a direct 
consequence of the linear term in the weak-coupling expansion. This is in contrast to 
the traceless models (such as the Ising model) which give K /  K = b(d-1)'2 = ~ ' 2 .  Even 
though the M K  result is recovered in both the strong- and weak-coupling limits for 
standard models, there are deviations for intermediate temperatures, as shown in figure 
5(a) .  Figure 5(b) displays the results for several traceless Potts models, again showing 
the characteristic sigmoidal shapes. 

The critical point and thermal exponent are found from the decimation transfor- 
mation 

K '  = f ln{[x4+ (q - 1)]/[2x2+ (q  - 2)]}. (37) 

These results for the traceless version of the model, and those obtained by matching 
reduced internal energies, are shown in figures 6 ( a )  and ( b ) .  As before, substantial 
improvement over M K  results is found, especially when matching the internal energy. 
For small values of q we find that the standard model approximation for y ,  breaks 
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0 10 2 0  
K 

Figure 5. Bond-strengthening factors for two-dimensional Potts models, for various values 
of 9, using a 2 x2  CDA: ( a )  standard, ( b )  traceless Potts models, as in equations (29) and 
( 3 1 ) .  

I , 

0 1 2 3 
4 

Figure 6. ( a )  Critical coupling K *  for the Potts model, as a function of 9. The results of 
the 2 x2  CDA using the criterion of free energy matching (i), and internal energy matching 
(ii), show a clear improvement over the M K  results. ( b )  As in ( a ) ,  but for the thermal 
exponent y,. 

down, the cause of which is not clear, though the effect has been seen in other 
approximation schemes (Nienhuis et a1 1979, Andelman and Berker 1981). Finally, 
in order to observe the first-order behaviour for q > 4  it is necessary to employ other 
methods, such as enlarging the parameter space (Nienhuis et a1 1979), or mapping to 
an Ising model (Walker and Vause 1985). 

3.2. Thermodynamic properties 

The starting point for the calculation of thermodynamic properties within the cluster- 
decimation approximation is the rescaling relation (Niemeijer and van Leeuwen 1973, 
1974) for the free energy f 

f ( K ) = a  ln2+d6-dKb+b-df(K‘).  (38) 
Here, a = b-d  [bd - 1 - d ( b  - l)] is the fraction of decoupled spins in the restructured 
lattice, each of which contributes only an entropic term of In 2 to the free energy per 
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site, and Kb = K‘+  In 2 is a zero-spin coupling generated in the decimation transforma- 
tion. The reduced internal energy e is 

e = Kaf/aK, (39) 

and the specific heat C is 

C = K2a2f/aK2. (40) 

In practice, we organise the recursion relations in a continued matrix product: 

where 

aK‘ IaK =aK;/aK = t a n h ( 2 k ) a k / a K ,  (42) 

and 

d2K’/dK2 = t a n h ( 2 k ) a 2 k / a K 2 +  2 ~ e c h * ( 2 k ) ( a k / a K ) ~ .  (43) 

As before, the partial derivatives of k with respect to K are obtained by implicit 
differentiation of the free energy matching equation. At each iteration of the RG 

calculation, we determine k ( K )  as described in previous sections, and evaluate the 
continued matrix product until the density vector converges. 

In figure 7 we show the free energy calculated from equation (38) in various 
approximations. The ZD and 3~ correlations (s,s,) are plotted in figures 8 ( a )  and ( b )  
on an absolute temperature scale, in units of the exact or best-estimate transition 
temperature. The improvement of the internal energy over the MK approximation is 
reflected in an improved specific heat, as shown for the d = 2  case in figure 9. The 
spontaneous magnetisation in three dimensions, when compared with the M K  result, 
shows a particularly striking example of the quantitative accuracy of the cluster- 
decimation approximation (figure 10). 

1 
0 3  0 4  05 

K 

Figure 7. Reduced free energy per spin of the two-dimensional king model, for various 
approximations, compared with the exact result (Onsager 1944). 
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Figure 8. Nearest-neighbour correlation (s,s,) for ( a )  two- and ( b )  three-dimensional lsing 
models. Horizontal axis is absolute temperature in units of the exact or best-estimate 
( d  = 3 )  transition temperature. Note the dramatic improvement over the Migdal-Kadanoff 
approximation 

1.0 I 

Figure 9. Specific heat of the two-dimensional Ising 
model. The temperature axis is as in figure 8. 

Figure 10. Spontaneous magnetisation of the three- 
dimensional Ising model. The Pad6 approximant 
results are from Scesney (1970). 

4. Conclusions 

We have described a method for systematically introducing control into real space 
renormalisation group calculation;. The technique involves the same topological 
restructuring as the Migdal- Kadanoff transformation but determines the couplings 
on the restructured lattice by the criterion of free energy matching. Approximations 
to the free energy per spin are obtained from those of finite clusters, whose statistical 
properties are solved exactly. No adjustable parameters are used in any of the 
calculations. 

As in other finite-system approximations, this approach allows for a systematic 
extrapolation of results to larger systems, and appears to give convergence to well 
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defined quantities. Further, the calculations explicitly show how different coupling 
parameters (such as bilinear and field terms) can be treated differently in the CDA 

transformations, leading to improved numerical results. Further investigation is needed 
to extend this analysis to all regions of a multi-parameter Hamiltonian space. 

In addition to much-improved critical-point properties, we have shown that the 
global thermodynamic functions calculated with this method are substantially more 
accurate than Migdal-Kadanoff approximations. 

We have restricted ourselves to small lattice clusters primarily for reasons of 
calculation simplicity. We envisage that a potentially useful approach for larger 
clusters, and  more complicated models, is the use of Monte Carlo (Binder 1979) 
methods to determine the relation between the restructured and  original couplings, 
by, for instance, matching internal energies of finite lattices. 

A second area of investigation is that of random systems such as bond-dilute 
magnets. Previous renormalisation group approaches (Jayaprakash et a1 1978, Kinzel 
and Domany 1981) have focused on renormalisation of the bond distribution, usually 
by matching its first few moments. More recent work (Andelman and  Berker 1984) 
has considered the entire distribution. With the approach proposed in the present 
work, one may explore matching, for instance, the quenched free energies of original 
and restructured clusters, which can be calculated explicitly. 
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